Quantum Computation, Theory Of

نویسنده

  • M A Nielsen
چکیده

1-The study of the model of computation in which the state space consists of linear superpositions of classical configurations and the computational steps consist of applying local unitary operators and measurements as permitted by quantum mechanics. Quantum computation emerged in the 1980's when P. Benioff and R. Feynman realized that the apparent exponential complexity in simulating quantum physics could be overcome by using a sufficiently well controlled quantum mechanical system to perform a simulation. Quantum Turing machines were introduced by D. Deutsch in 1985. Initial work focused on how quantum mechanics could be used to implement classical computation (computation in the sense of A. Church and A. Turing), and on analyzing whether the quantum Turing machine model provided a universal model of computation. In the early 1990's, D. Deutsch and R. Jozsa found an oracle problem that could be solved faster on an error-free quantum computer than on any deterministic classical computer. E. Bernstein and U. Vazirani then formalized the notion of quantum complexity from a theoretical computer science point of view, and showed that with respect to oracles which reversibly compute classical functions, quantum computers are super-polynomially more efficient than classical computers. The gap was soon improved to an exponential one. This work culminated in P. Shor's discovery of an efficient (that is, consuming only polynomial resources) algorithm for factoring large numbers and for computing discrete logarithms. It implied that widely used public key cryptographic systems would be insecure if quantum computers were available. Subsequently, L. Grover found an algorithm which permitted a square-root speed-up of unstructured search. Finding new algorithmic improvements achievable with quantum computers which are not reducible to Shor's or Grover's algorithm is currently (2000) an active research area. Also of great current interest is understanding how the problem of simulating quantum systems, known to be tractable on a quantum computer, relates to the problems conventionally studied within classical computational complexity theory. Comprehensive introductions to quantum computation and the known quantum algorithms may be found in [4, 3]. The algorithmic work described above firmly established the field of quantum computation in computer science. However, it was initially unclear whether quantum computation was a physically realizable model. Particularly worrisome was the fact that in nature, quantum effects are

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

A quantum-mechanical investigation of functional group effect on 5,5'-disubstituted-1,1'-azobis(tetrazoles)

The present work reports the detailed B3LYP/6-311++G(d,p) study of most stable transand cisconfigurations photoisomerization in the core system of computational photochemistry-the 5,5'-disubstituted-1,1'-azobis (tetrazole) molecules. All computations were carried out in gas phase attemperature 293.15 K and pressure 1 atm. Firstly; the potential energy surface (PES) of the groundstate of the mol...

متن کامل

Interaction of alanine with lithium. I- the alanine–Li -n (H20) n (0–2) complexes

The energy minima of systems made of an alanine molecule, a lithium cation and a various number of watermolecules have been determined with the help of quantum mechanical computations at the B3LYP DensityFunctional Theory level of computation and the standard 6-311++G (d,p) basis set. Several structures, close inenergy are found and the presence of one or two water molecules around the cation m...

متن کامل

The Quantum Statistical Mechanical Theory of Transport Processes

A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.

متن کامل

فاز هندسی سامانه‌های اپتومکانیکی

In this paper, with respect to the advantages of geometric phase in quantum computation, we calculate the geometric phase of the optomechanical systems. This research can be considered as an important step toward using the optomechanical systems in quantum computation with utilizing its geometric phase.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000